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ABSTRACT.
In the case of nearly incompressible elastic materials the strain energy, the

shear stress, and the difference of normal stresses can be computed accurately by
direct methods when the p-version of the finite element method is used. Compu-
tation of the sum of the normal stresses requires special procedures. In this paper
such procedures are described. Examples are presented.
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1. INTRODUCTION.

The problem of computing stresses accurately and reliably in the case of nearly

incompressible solids and in the incompressible limit of the compressible Navier-

Stokes equations has received a great deal of attention in recent years. Formu-

lations based on the principle of virtual work have been abandoned in favor of

mixed and penalty methods in order to avoid locking which occurs when elements

of low polynomial degree are used. An overview of the evolution of mixed and

penalty methods and a clear exposition of the locking phenomenon is available in

,I. A mixed formulation which has been successfully applied to elastic and inelas-

tic problems is presented in 4. Mixed formulations have been used successtuiiy , -

in fluid dynamics in conjunction with elements of high polynomial degree{ ,

Unlike the formulations presented in [1,2,31, our formulation is based on the

principle of virtual work. The solution is obtained in terms of displacements. The

sum of normal stresses is recovered by post-solution operations. Our approach to

circumventing the locking problem is based on the following:

It has been established theoretically and demonstrated numerically that the

error measured in energy norm converges at the same rate independently of Pois-

son's ratio when the p-version of the finite element method is used (4]. When

the material is nearly incompressible (Poisson's ratio is close to 1/2) then direct

computation of the sum of the normal stresses from the finite element solution

yields very inaccurate results because the volumetric strain is nearly zero in the

least squares sense. Small oscillations about the mean value occur, due to errors

of approximation in the finite element solution. Direct computation of the sum

of the normal stresses involves multiplication of the volumetric strain by a large

number, the bulk modulus, which magnifies the errors of approximation [5]. For

this reason the sum of normal stresses has to be computed indirectly. On the other

hand, the shear stress and the difference of the normal stresses can be computed

from the finite element method with good accuracy.

The situation is similar in fluid dynamics when the incompressible limit of

the compressible Navier-Stokes equations is approached but the terminology is

Q'
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different: We speak of rate of deformation instead of strain and pressure instead

of the sum of normal stresses.

The indirect method described herein utilizes the fact that the sum of the

normal stresses satisfies Laplace's equation when the body forces are zero or con-

stant. To solve Laplace's equation it is necessary to specify either the sum of the

normal stresses or its derivative with respect to the normal along the boundary

of the solution domain. Since we cannot compute these values from the finite ele-

ment solution directly, we utilize either specified traction values or the equilibrium

equation and the shear stresses and the differences of normal stresses computed
Ufrom the finite element solution.

I
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2. BACKGROUND.

We denote the solution domain by 10 and the thickness of the elastic body

by t. (constant), the displacement vector by a, and its Cartesian components by

u. = u.(x, y), uy = u,(x, y). The strain components corresponding to a are denoted

by e(V), M(, , -y. By definition:

(,) d,,= 4T--" -) f , , ) , --- + -(1)

In the case of plane strain, the stress components are related to the strain com-

ponents by Hooke's law:

o4," =A + 4) + 2G4:u) (2)

-A(4'+4 ) +2GWu) (2b)

a( U) -A (CLU) + fu)) (2c)

- =Gy _) (2d)

where

EvG E
(I + v)(1 - 2v) 2(1 + V)

are the Lami constants. In matrix form (2a,b,c) are witten as:

10,(U) I IEI (u)} (4a)

where

a()} a {W a) (,)} I' I e = (E() }T IMbT

and [A+20 A 01
[El A A +2G 0 • (4c)

0 0 GJ

[E] is a positive definite matrix and therefore it can be written as:

[El = [TJT [Dj[T (5)

-3-
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where [DI is the diagonal matrix of the eigenvalues of [E and [TI is the matrix of

normalized eigenvectors of [El. Specifically, [DI and [TI are:

2(A + G) 0 01 /v\42 1/V
[DI 0 2G [TI= 1/ -1//2 0 (6)

o G 0 1

Note that [TI = [TIT = [T]- . The strain energy is:

U iZ) = .ff (o.(")e(") + oaM)(u) + 'u) ),W) t, dx dy

(7a)

Iff {e(')I}[E] {E(u)} t.dzdy.

The energy norm of a is denoted by [lLIIe:

II,6iE de v"- . (7b)

Using (5) and (6) we have:

(a ff + ~ )2()2+G(yW ,d y
U((A) = (e(u) + G(, ,0 - + dd (8)

We denote the exact solution (in the virtual work sense) by tSEx. To obtain

finite element approximations to ,1zx we construct a mesh a by subdividing f0 into

triangular and/or quadrilateral elements, some or all of which may have curved

sides. The meshes are so constructed that any two elements in the mesh either

have a vertex or an entire side in common, or no points in common. We denote

the number of elements by M(A). The functions:

-- Q-- (f, n), y = Q r), (fm) c or ( S 0ljq, (i = 1, 2,... M(A)) (9)

map a suitably defined standard triangular element 0.() (resp. standard quadri-

lateral element n)) into the ith triangular (resp. quadrilateral) element. The set

of all functions which have finite strain energy on fl and are polynomials of degree

less than or equal p on f0t), (resp. polynomials of degree less than or equal to p,

supplemented by monomial terms of degree p + I on 0( )) is denoted by SP(f0, A, Q)

-4-



or simply S. Any function in S is continuous on 0. We define the set of admissible

functions to be those functions in S which satisfy the kinematic boundary condi-

tions and denote them by 9. The dimension of § is called the number of degrees

5 of freedom and is denoted by N.

The finite element solution CFE is that function from § which minimizes the

strain energy of the error:

U (izx - 6FE) = min U (iZx - a). (10)

Denoting F = x - iFP, we have

U()=~fJ [(AX +0G) (C(e) + C( ) ) 2 + G + G() Y~c(v;)2 t, dz dy. (11)

Th- strain energy of the error U(ej can be progressively reduced by constructing

sequences of discretization S1, S2, S3, ... by successive mesh refinement, increase

of the polynomial degree of elements, or both. U(i) approaches zero at a rate

which depends on Ggx and the way in which the finite element spaces S1, S2 , $3...

are constructed. Details are available in [6] and the references listed therein. Ob-

taining a sequence of finite element solutions corresponding to S1 , S2 ,... is called

extension. If the sequence of finite element spaces is constructed by successive

mesh refinement then it is called h-extension, if the mesh is fixed and the polyno-

mial degree is increased then it is called p-extension and if the two are combined

then it is called hp-extension. In extensions the number of degrees of freedom is

progressively increased.

It has been shown theoretically and demonstrated numerically that in p-

extensions U(e) -. 0 at a rate which is independent of v, even if v is very close

to its limiting value of 1/2 [4]. In the case of h-extensions and small p the rate

of convergence slows very substantially as i, --- 1/2. The reason for this can be

seen from (11): As v -. 1/2, A - co and the first term of the integrand in (11) can

be viewed as a penalty term, i.e. a constraint which requires that (CZ) + CY ) be

very nearly zero in the least squares sense. One constraint is associated with each

element, thereby reducing the number of degrees of freedom by one per element.

When h-extension is used and p is low then the number of constraints increases

at almost the same rate as N and the rate of convergence slows. In the case of

p-extension the number of constraints does not grow, hence nearly incompressible

materials can be analyzed without significant loss in effectiveness.

-5-



3. COMPUTATION OF STRESSES.

We now define the root-mean-square stress measure s(a) as follows:

--d f () 2 [(G,)) ,u) 2 + (,(u)) 2]

where V is the volume. Using (4a,bc) and (5) S 2 (g) can be written in terms of the

strains as follows:

S2(lj = _Lgff [2A +)2 ((u +4u) 2() 2 + 2G 2 (,- ) 2 + ()] G,(u) . (13)

On comparing S 2(,) with U(6) in (8) we see that the two expressions are similar.

In fact, we can write:

V" A 2t + G ( G dxdy = V Az (" d(14a)

<V(A + G) U(ej

4 that is, the square of the error in the sum of the normal stresses integrated over the

volume is bounded by the strain energy of the error U(e multiplied by a constant

which depends on Poisson's ratio and goes to infinity as L -. 1/2. On the other

hand, the error in the differences of normal stresses and shear stress can be made

arbitrarily small even if v -. 1/2:

(e194fL-fj2G2(W - e)tdd= Jf ' t, dzdy S GU(e) (14b?)

and

This analysis indicates that we can expect good approximations (in the mean) to

a, - a and r, from the finite element solution via the constitutive relationships

(2a-d) but not to a. +ay. Therefore we must avoid using the constitutive equations

in the computation of the sum of normal stresses. To do this we utilize the fact

-6-



that when the body forces are zero or constant then the sum of normal stresses

satisfies Laplace's equation:

A(,,, + a,) = 0. (15)

For details see, for example, [7,8]. Obvious modifications can be made for the

case of general body forces. The boundary conditions are established from the
equilibrium equations using the fact a.' " )-ao J ' ) and - c b opef

an rl"" can be computed from

the finite element solution with sufficient accuracy. We denote typical boundary

segments of the solution domain fl by r(,), (i = 1,2,3,4) and we denote the positive

(outward) unit normal by n, the positive unit tangent by t. Four cases are possible:

(1) an, rnt are given on r1 . Since the sum of normal stresses is invariant with

respect to coordinate transformation:

a, + a. =a + at - "- +

where the superscript (r) indicates that the function, in this case a,, is known

from the specified boundary condition.

(2) an, ut are given on r 2. The procedure is the same as in case (1) with r 2 replacing

r, in (16). An important special case is the condition of antisymmetry, i. e.

an = 0, U = 0. In this case a. + ay = 0.

(3) Un, rnt are given on r,3. In this case the normal derivative of a. +a, is computed

from:
o( ,+ ,,) (,,n+ ,) (UFn' ' ) - a("")) , ( '
a(=+ ) = a(--+) a(an t 2 a'n + C3  (17)

an an an at

where we used the equilibrium equation:

an arnt

When boundary conditions of type (1) or (2) are imposed on part of the

boundary then C3 = 0. When boundary conditions of type (3) are prescribed

on the entire boundary then C 3 is a constant determined so that equilibrium
is satisfied by the boundary conditions:

j (a(anu rj'pm - (pz) .+2 ,r,.) cia + C3  fci = 0. (19)

-7-
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An important special case is the condition of symmetry, i. e. u, = 0, rt = 0. In

this case O(a. + ao)/an = 0.

(4) U,, Uh are given on r4:

a,. +,ay) a(an +,a,) a(,u"- - aPD '"--)) on, P"-
8n 8 8n 8t

w, When boundary conditions of type (1) or (2) are imposed on part of the

boundary then C 4 = 0. When boundary conditions of type (4) are prescribed

on the entire boundary then C4 is a constant determined so that equilibrium

is satisfied by the boundary conditions:

(2aur1 al~urm)) + 2 at ) d+C 4 fdi = 0. (21)
an,,,:' -at", ), f'

When only boundary conditions of type (3) and (4) are imposed on the entire

boundary then C3 = C4 = C and C is determined analogously to (19) and (21).

Thus in cases (1) and (2) the sum of the normal stresses is specified on the

boundary (Dirichlet condition), in cases (3) and (4) the normal derivative of the

sum of the principal stresses is specified (Neumann condition). Either the given

boundary condition or the equilibrium equation is used to avoid computation of

(a, +ay) or its normal derivative from the finite element solution via the constitutive

equations. When only cases (3) and (4) are specified along the entire boundary

then the pressure can be determined only up to an arbitrary constant.

The stresses computed from the finite element solution are not continuous but

the sum of the normal stresses specified on the boundary in cases (1) and (2) has

to be coiutinuous. For this reason some averaging of the values at the nodes is

necessary.

3.1 Points of stress singularity.

When one or more points on the boundary are points of stress singularity then

the procedure just described has to be modified as follows: In the neighborhood

of singular points the exact solution can be written in the form:
0o

tEX = 2 A,r 111,(t), r < ro (22)
=1

-8-



where r, 6 are polar coordinates centered on the singular point; the coefficients Aj

are called generalized stress intensity factors; A, and 0,(a) are determined from the

conditions that aEx must satisfy the equations of equilibrium and the boundary

conditions in the neighborhood of the singular points; ro > 0 is the radius of

convergence of the infinite series (22).

The coefficients Ai can be computed from the finite element solution by a

method so that the accuracy of A, depends only on the accuracy of the finite

element solution irFE measured in energy norm and the accuracy of the finite

element solution to an auxiliary problem tgrE, also measured in energy norm,

which differs from the original problem only in loading. Thus:

I(Ai)Ex - (Aj)FEI 1 :5JiUEX - i1FEIIEIIWtEX - t9FE JIB (23)

The function rFE is not actually computed, it serves theoretical purposes only. In

general the errors IU,6x - i!FElIB and lwsx - WFB IB are of comparable magnitude,

hence the error in the computed values of A, is comparable with the error in

strain energy. For details see references [9-12]. Since the accuracy of Ai depends

only on the accuracy of solutions measured in energy norm which, in the case

of p-extensions, is not sensitive to Poisson's ratio, it is possible to compute Ai

accurately independently of Poisson's ratio.

Once A. are known, the loading corresponding to the stress singular term can

be subtracted from the applied loading and the problem solved as a smooth prob-

lem. Alternatively a small neighborhood of the singular point can be "removed"

from the domain and either the displacements or tractions corresponding to (22)

imposed on the boundary which defines the small neighborhood. An example is

given in Section 5.

-.9-



4. EXAMPLE: RIGID CIRCULAR INCLUSION IN AN ELASTIC PLATE.

We will investigate the case of a rigid circular inclusion in an infinite plate,

subjected to unidirectional tension. Plane strain conditions are assumed. The

notation is shown in Fig. 1. This example is typical of cases where all derivatives

of the exact solution are continuous and bounded on the entire solution domain,

including the boundary of the solution domain, but one or more singular points

lie outside of the solution domain.

y

"4"===== b

g-

Fig. 1. Notation.

4.1. The exact solution.

In this case the exact solution is available [8]. The exact displacement compo-

nents are:

t'L = fS ( - 1) r2 +2Y a 2+ [6(r+ 1) a 2+ 2r2 +-L6a cos 20 (24a)

u8 = - a00' ( - 1  a 2 +  2 r2 _ 260] sin 2 0 (24b)
80r r2

and the exact stress components are:

r=- -_ 1-_ 1 r - cos 20 (25a)

a00 + a2  360

f = - 2 - r2- r4 ) sin 20 (25c)

-10-
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where r., P, -y, 6 are constants which depend on Poisson's ratio v only. In the case

of plane strain:

i 22 - 4v 15 -v 3 4v ; - 2 3 - 4v

The center of the rigid circular inclusion is a singular point.

4.2. Finite element solutions.

Finite element solutions were obtained by means of the computer program

PROBE [13]. The solution domain is defined by a = 1, w = b = 4 in Fig. 1. The

domain and two finite element meshes, a four-element mesh and an eight-element

mesh are shown in Fig. 2.

C C

2 2

1 EI
-A__ _ B L AB

IFig. 2. Solution domain and finite element meshes.

The boundary conditions are as follows: Along the circular arc AE both dis-

placement components are zero. Along the symmetry lines AB and DE the normal

displacement component and the shear stress are zero. Along boundaries BC and

CD the tractions computed from (25.a,b,c) are imposed. The corresponding load

vectors were computed by numerical quadrature using twelve Gauss points per

element side.

4.2.1. Four-element mesh, 0 < v < 0.4999999.

The exact value of the strain energy for v = 0.4999, computed from (24a,b)

and (25a,b,c), is 5.79590408 a2 a2 t./E. The number of degrees of freedom N; the

-11-I
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strain energy values computed from the finite element solutions corresponding

to p ranging from 1 to 8; the estimated algebraic rate of convergence 20, and

the estimated and true relative errors in energy norm are given in Table 1. The

estimated algebraic rate of convergence 2,6 is an estimate of the absolute value of

the slope of the logU(c vs. log N curve. The estimated relative errors in energy

norm, defined by

(e)zdS, 100 IICEX - 6FB1B (27)

were computed by the method described in [13,14]. We see that the relative error

in energy norm is under one percent at p = 8.

Table 1. Convergence of the strain energy.

Estimated and true relative errors in energy norm.

Four-element mesh, v = 0.4999.

U(iaFE)E Et.'d Est.'d True
P N a2 a 2 t( (%) 2(e)P (%)

1 8 0.35682 - 96.87 96.87
2 24 3.15500 0.66 67.50 67.50
3 40 5.16100 2.79 33.10 33.10
4 64 5.66227 3.31 15.19 15.18
5 96 5.75195 2.74 8.72 8.71
6 136 5.78552 4.12 4.26 4.23
7 184 5.79388 5.27 1.92 1.87
8 240 5.79550 5.27 0.95 0.84

c c 5.79590 c 0 0

The relationship between relative error in energy norm and the polynomial

degree of approximation for other values of Poisson's ratio are shown in Fig. 3.

Note that the relative error in energy norm is plotted on a logarithmic scale against

the square root of the number of degrees of freedom N. The reason for this is that

when the exact solution is analytic on the solution domain, including its boundary,

then the rate of convergence of p-extensions is exponential:
k (8

exp(yv'T (28)

where k and -f are positive constants, [6]. Constant k depends on Poisson's ratio

but -1 does not. This is demonstrated by the numerical results summarized in Fig.

-12-

4



3 which show that the relative error in energy norm depends on v but its rate of

change with respect to v'N is constant.

N

0 10 20 50 100 200 400

zw

0
UJUiJ p=1 p=2 P:=3
C. 100 P=4

2; p=5

a:" p=6

0
z P=7
>" 10(D 8

UJ = 0.4999999
z
W v = 0.499999

Zv =- 0.49999
z 1 v =049

cv = 0.4999

0
CC v 0.49
ccv= 045

J 0.1 1/ = 0.3

-J)

uLJ
1I I I I I I I I

0 2 4 6 8 10 12 14 16 18 20

v N

Fig. 3. True relative error in energy norm vs. VNW for various Poisson's ratios.

Four-element mesh.

4.2.2. Eight-element mesh, V = 0.4999999.

Finite element solutions were also obtained with the eight-element mesh shown

in Fig. 2b for v = 0.4999999. The exact value of the strain energy in this case is

is 5.79517057 o2a 2 t,/E. Convergence of the strain energy for p ranging from 1 to 8

and the estimated and true relative errors in energy norm are shown in Table 2.

Once again the relative error in energy norm is under one percent at p = 8.

4.3. Computation of the um of the normal stresses.

The sum of the normal stresses was computed with the four-element mesh

-13-



Table 2. Convergence of the strain energy.

Estimated and true relative errors in energy norm.

Eight-element mesh, V = 0.4999999.

U(ITFE)E Est.'d Est.'d True
p-aN, 2t, 2# (e,)E (%) (e') (%)

1 16 0.00029 0.00 100.00 100.00
2 48 0.03364 0.01 99.71 99.71
3 80 2.69231 1.21 73.17 73.17
4 128 5.52142 5.17 21.74 21.73
5 192 5.71015 2.88 12.12 12.11
6 272 5.78156 5.25 4.85 4.85
7 368 5.79393 7.79 1.49 1.46
8 480 5.79506 7.79 0.53 0.44

c c 5.79517 c 0 0

shown in Fig. 2a for L = 0.4999 and with the eight-element mesh shown in Fig. 2b

for v = 0.4999999.

Along the circular segment AE the normal derivative of the sum of the normal

stresses was computed from (20). Along the symmetry lines AB, DE the natural

boundary condition a(a, + a,)/na = 0 was imposed and along boundaries BC, CD

a, +a. was computed from (16). In order to utilize existing capabilities of the com-

puter program PROBE as much as possible, the normal derivative was computed

numerically at nine equally spaced points along each of the two curved element

boundaries. The normal derivatives were then determined at 12 Gauss points by

interpolation. The load vector terms were computed by Gaussian quadrature, us-

ing 12 quadrature points. With appropriate modifications in the program, transfer

of boundary conditions from the solution of the elasticity problem to the Laplace

problem can be automated so that no loss in accuracy is incurred in the transfer

itself.

The essential boundary conditions were handled by computing (a + ,) at ten

equally spaced points along each element boundary on AB and BC, including the

vertices. At the vertices the computed values were averaged. For example, in the

case of the four-element mesh (L, = 0.4999) and p = 8, at vertex C:
(a. + a',c = 1(0.9980777 + 1.0019223) a.. = 1.0000000 a. (29)

2

which agrees to at least eight significant digits with the exact value of (a + a,).

Least squares approximation was used to obtain coefficients of the basis functions

-14-
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5.0
v =0.4999

4.0

3.0

1.0

a*x + cry

-2.0L

-3.0
* EXACT

-'4.0 - oEXTRACTION
* DIRECT COMPUTATION

-5.0

-6.01 1 1 1 1
0.0 10.0 20.0 30.0 40.0 50.0 50.0 70.0 80.0 90.0

ANGLE [DEGREES)

Fig. 4a. The sum of normal stresses along the rigid inclusion.

Four-element mesh, p =8, v = 0.4999.

5.0
v 0.49993999

'4.0

3.0

2.

o'x + a*Y1.

am 0.0

-1.0

-2.0

-3.0

-'4.0 -0 EXTRACTION
0 DIRECT COMPUTATION

-5.0
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Fig. 4b. The sum of normal stresses along the rigid inclusion.
Eight-element mesh, p = 8, v= 0.4999999.
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along the element boundaries with the restriction that the values at the vertices

were fitted exactly.

The sum of the normal stresses along the rigid inclusion, computed directly

from the finite element solution, and by the extraction procedure described in this

paper, are plotted along with their exact values in Fig. 4a and Fig. 4b. The poly-

nomial degree 8 was used in solving both the elasticity problem and the Laplace

problem. The estimated and true relative errors in energy norm for the elasticity

problem are in Tables 1 and 2. In the case of the Laplace problem the estimated

relative errors in energy norm were as follows: Four-element mesh, p = 8, N = 136,

E = 0.10%. Eight-element mesh, p = 8, N = 27 3, (e) E = 0.04%.

The results shown in Figures 4a,b are indicative of the quality of approximation

obtained for the entire domain. A contour plot for the sum of normal stresses,

computed with the eight-element mesh, z = 0.4999999, is shown in Fig. 5.

H

Cs J

Fig. 5. Contour plot of the sum of normal stresses.

Eight-element mesh, p = 8, v = 0.4999999. Contour interval: 0.25 oao.
O B: -0.75cmo, E: 0, I: 1.00aoo, M: 2.00ao, F: 2.75aOo.

Equations (14b,c) show that a.-ay and r=y converge in the least squares sense at

the same rate as the error in energy norm does, which is exponential. Exponential
~convergence can be proven for pointwise values of o - os,, r= and their derivatives

also, but the proof is beyond the scope of this paper. This example demonstrates

that control of errors in boundary data does not require large computational effort.
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5. EXAMPLE: L-SHAPED DOMAIN.

This example is typical of cases where, due to reentrant corners, sudden

changes in boundary conditions, material properties or loading, one or more sin-

gular points lie on the boundary of the solution domain.

C 1-

T
a

A F

~ ,,-- a 0

DK~~a

Fig. 6. L-shaped domain. Notation.

5.1. The exact solution.

The L-shaped plane elastic body, shown in Fig. 6, is loaded by tractions which

correspond to the following exact displacement field:

, r= - 1(r - Q1 (A + 1)) cosA 1 8 - A, cos(Aj - 2)01 (30a)

u , ) 
r ((x + Q1 (Aj + 1)) sin A1 + A1 sin(A1 - 2)01 (306)

where A, is a constant, analogous to the mode 1 stress intensity factor in linear

elastic fracture mechanics; A, = 0.544483737, Qi = 0.543075579 are constants deter-

mined so that the solution satisfies the equations of equilibrium and the stress

free boundary conditions on the reentrant edges. C = E/2(1 + V) is the modulus of

rigidity; x is a constant which depends on Poisson's ratio and whether plane stress

or plane strain conditions are assumed. In this example plane strain conditions

are assumed hence x = 3 - 4,,. The stress components are:

-17-



z = A, A1 ,- '- ((2 - Q1(, 1 + 1)) co.,(,i - 1) 0 - (,A1 - 1) cos(Ai - 3)01l (31a)

W -,= A1, A1 ,-"'- [(2 + Q1(A1, + 1)) cos(,i- 1)0 + (A1 - 1) cos(A, - 3) o (31b)

r-. = A, A, rA' - [(At - 1) sin(A, - 3) 0 + QL(Al + 1) sin(A1 - 1) 91. (31c)

The boundary conditions are as follows: Along the reentrant edges AB and FA the

normal and shear stresses are zero; along edges BC, CD, DE and EF the normal

and shear stresses corresponding to (28a,b,c) are prescribed. These tractions sat-

isfy equilibrium hence only rigid body constraints have to be applied. The exact

value of the strain energy is:

U(iisx) = 2.35967 A2a 2 1tz/E. (32)

Additional information concerning this model problem is available in (12,14].

5.2. Finite element solutions.

In this example the eighteen-element mesh shown in Fig. 7 and v = 0.4999999 was

used. The coefficient A1 was determined by the cutoff function method described

in [12,13]. The results of finite element solutions corresponding to p ranging from

1 to 8 are given in Table 3.

Table 3. Convergence of the strain energy and the computed value

of the generalized stress intensity factor A1 .

Eighteen-element mesh, v = 0.4999999.

p N U(ilFE) (AI)FE

1 41 0.00184 3.06910
2 119 0.42400 25.27936
3 209 0.84901 2.48314
4 335 0.94668 1.30447
5 497 0.99538 1.02696
6 695 0.99761 1.01301
7 929 0.99949 1.00296
8 1199 0.99974 1.00105

These results show that the errors in strain energy and A1 are of comparable

magnitude and A, converges at approximately the same rate as the strain energy

-18-
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Fig. 7. L-shaped domain. Eighteen-element mesh.
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Fig. 8. L-shaped domain. Sum of normal stresses at r 0. Ola (p= 8).



does. This is consistent with the theoretical estimate for extraction procedures

(23). In general, data computed by extraction procedures exhibit superconver-

gence.

5.3. Computation of the sum of normal stresses.

In the close neighborhood of the singular point the exact solution is approx-

imated by the expression (22) with A, computed by the cutoff function method

described in [121. Thus the error in the displacements and stresses, and any other

quantity computed from (22), is controlled by the error in the coefficients A,. In

this model problem the exact solution is the first term in (22) hence we need not

be concerned with the question of where to truncate the infinite series (22). We

note, however, that the coefficient of the second term, corresponding to the first

antisymmetric mode of deformation (A2 = 0.90853), computed from the finite ele-

ment solution of p = 8 by the cutoff function method, is 2.38 x 10- 9 (A,)Ex. From

Table 3 we see that A, is accurate to 0.1 percent, hence all stress components are

also accurate to 0.1 percent.

In order to simulate the case where the stresses are computed from (22) only

in the immediate neighborhood of the singular point but elsewhere the method

described in Section 4 is used, we removed from the soltion domain the circular

sector of radius 0.0225 a, defined by the inner circle in Fig. 7. We computed the

sum of normal stresses corresponding to (22) along the boundary of this sector.

We imposed the symmetry boundary condition along the z-axis (see Fig. 6) and

along the other boundary segments we computed the sum of normal stresses from

(16). The computed sum of normal stresses along a circle of radius 0.1 a is shown

in Fig. 8. We see that the accuracy is about the same as in the case of smooth

solutions discussed in Section 4.

The results of this example are typical of the performance of hp-extensions

where the error in energy norm is of the order: exp(--fN'/ 3), _y > 0. Once again,

it can be proven that convergence of a. - a,,, r., and their derivatives, computed

at points chosen independently of the mesh refinement, has the same exponential

character. This explains the high accuracy of the results in this example.

-20-



6. NOTE ON THE INCOMPRESSIBLE LIMIT OF THE
COMPRESSIBLE NAVIER-STOKES EQUATIONS.

The mathematical formulation of compressible Navier-Stokes equations is very

different from the mathematical formulation of the linear elasticity problem. Nev-

ertheless, in the case of viscous fluids which satisfy certain restrictions on the first

and second viscosity coefficients, the limiting case with respect to the Mach num-

ber approaching zero is exactly analogous to the limiting case of incompressible

elasticity with respect to Poisson's ratio approaching 1/2. Precise statement of

the necessary conditio." and rigorous proof is available in [15).

A%

CwL
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7. SUMMARY AND CONCLUSIONS.

We have described a method for the computation of stress components in

the case of nearly incompressible isotropic elastic materials. We have shown that

-in those problems where the exact solution is smooth the shear stresses and the

differences of normal stresses can be computed directly from the finite element

solution, provided that the error measured in energy norm is sufficiently small. For

this class of problems p-extensions provide efficient means for reducing the errors

of approximation and the performance of p-extensions is not sensitive to Poisson's

ratio. Thus yield criteria which are independent of the sum of normal stresses,

such as the maximum shear stress criterion, can be applied directly, independently

of Poisson's ratio.

When Poisson's ratio is close to 1/2 then the sum of the normal stresses has

to be determined indirectly. When the body forces are zero or constant then

this involves solution of the Laplace equation, the boundary conditions of which

are determined from the finite element solution of the elasticity problem and the

specified boundary tractions.

In those problems where one or more points of stress singularity occur on the

boundary of the solution domain the procedure is similar to the case of smooth

solution but in the neighborhood of singular points the approximation is in terms

of the coefficients of an asymptotic expansion which can be computed by methods

described in [7-10]. Important advantages of these methods are that they are very

efficient and their accuracy is not sensitive to Poisson's ratio.

In the method described "ierein the solution for the sum of normal stresses is

* decoupled from the solution of the displacement components in the sense that first

the displacement components are approximated, independently of the sum of the

normal stresses, then the sum of normal stresses is approximated in a separate

solution step. In mixed formulations such decoupling generally does not occur.

-22-
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